

Diagonalization

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu

Table of contents

01

Introduction

02

Similarity

03

Eigenvalue
Multiplicity

04

Diagonalization

01

C

Introduction

Conclusion from previous theorems

Theorem (1)

- Theorem “The eigenvalues of a triangular (upper/lower/diagonal) matrix are the entries on its main diagonal.“ can leads to **if we** have matrix A and B that $D = B^{-1}AB$ be a diagonal matrix:

$$\det(\lambda I - D) = \det(\lambda I - A)$$

Proof?

Similarity and Diagonalizable

Definition

Two n -by- n matrices A and B are called **similar** if there exists **an invertible n -by- n matrix Q** such that

$$A = Q^{-1}BQ$$

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix D : $D = Q^{-1}AQ$, that is, if $A = QDQ^{-1}$ for some invertible matrix Q and some diagonal matrix D .

02

Similarity

C

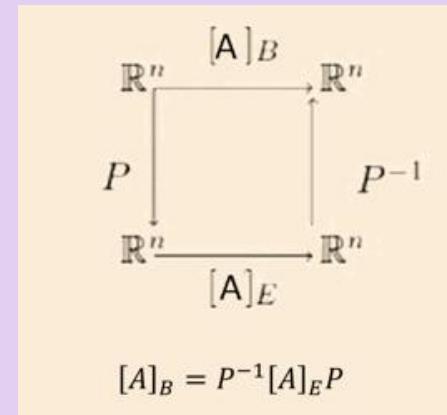
Relation between similar matrix and change of basis!

Note

- A square matrix for a linear transform

$$A: n \times n \quad T: \mathbb{R}^n \rightarrow \mathbb{R}^n \Rightarrow \mathbf{Aa} = \mathbf{b} \quad a, b \in \mathbb{R}^n$$

$$\begin{aligned} a &= P\bar{a} \\ b &= P\bar{b} \end{aligned} \} \Rightarrow AP\bar{a} = P\bar{b} \Rightarrow \underbrace{P^{-1}AP}_{\bar{A}} \bar{a} = \bar{b} \Rightarrow \bar{A}\bar{a} = \bar{b}$$



- Linear transform in new basis $\bar{A} = P^{-1}AP$
- \bar{A} is the standard matrix of linear transform in new basis.
- **Similarity Transformation**

Think!

Warnings

1. The matrices

$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B , then $B = EA$ for some invertible matrix E .) Row operations on a matrix usually change its eigenvalues.

- ❑ A matrix is a similarity invariant, meaning it remains unchanged under a similarity transformation.
- ❑ Why trace is a similarity invariant?
- ❑ Why rank is a similarity invariant?

Facts

Theorem (2)

- Similar matrices have:
 - same determinant
 - equal characteristic equations
 - same trace
 - same rank
 - inverse of A and B are similar (if exists)

Proof?

Another Notation

- With similarity transformation Q , matrix A changed to a diagonal matrix $diag(\lambda_1, \lambda_2, \dots, \lambda_n)$
- Matrix A has n linear independent eigenvectors

□ $[Aq_1 \ Aq_2 \ \dots \ Aq_n] = [q_1 \ q_2 \ \dots \ q_n] \underbrace{\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}}_{\Lambda}$

□ $A [q_1 \ q_2 \ \dots \ q_n] = Q\Lambda \Rightarrow A = Q\Lambda Q^{-1}$

□ $\Lambda = Q^{-1}AQ^T$

□ $A = Q\Lambda Q^{-1}$

Find matrix Q in similarity formula

Note

Two n -by- n matrices A and B are called **similar** if there exists an invertible n -by- n matrix Q such that $A = Q^{-1}BQ$. One solution for Q is the matrix whose columns are the eigenvectors of B .

Example

Find the similarity matrix of A

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Solution:

$$B = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}$$

03

C

Eigenvalue Multiplicity

Algebraic/ Geometric multiplicity

Example

Find the eigenvalues with their repetition and eigenvectors:

- $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Definition

- The number of times an eigenvalue occurs as the root of the matrix's characteristic polynomial is known as its **algebraic multiplicity**.
- The **geometric multiplicity** of the eigenvalue is defined as the dimension of eigenspace associated with that eigenvalue.
- The geometric multiplicity of an eigenvalue λ is the dimension of its eigenspace, which is the same as the number of linearly independent eigenvectors associated with λ .

Algebraic/ Geometric multiplicity

Theorem (3)

Geometric multiplicity of λ \leq Algebraic multiplicity of λ

Proof?

04

Diagonalization

Diagonalizable

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = QDQ^{-1}$ for some invertible matrix Q and some diagonal matrix D . The columns of Q is called an **eigenvector basis of \mathbb{R}^n** .

Example

$$\begin{pmatrix} -12 & 15 \\ -10 & 13 \end{pmatrix} \text{ is diagonalizable because it equals } \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \text{ is diagonalizable because it equals } \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}^{-1}$$

$$\frac{1}{5} \begin{pmatrix} -8 & -9 \\ 6 & 13 \end{pmatrix} \text{ is diagonalizable because it equals } \frac{1}{2} \begin{pmatrix} -1 & -3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}^{-1}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix} \text{ is diagonalizable because it equals } \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}^{-1}.$$

Diagonalizable

Theorem (4)

An $n \times n$ matrix A is diagonalizable **if and only if** A has n linearly independent **eigenvectors**.

Proof?

Corollary

- An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Diagonalizable

Theorem (5)

Let A be an $n \times n$ matrix. The following are equivalent:

- A is diagonalizable.
- The sum of the geometric multiplicities of the eigenvalues of A is equal to n .
- The sum of the algebraic multiplicities of the eigenvalues of A is equal to n , and for each eigenvalue, the geometric multiplicity equals the algebraic multiplicity.

Proof?

Power of matrix

Theorem (6)

Find A^n

Proof?

Diagonalizable and Non-Diagonalizable Matrices

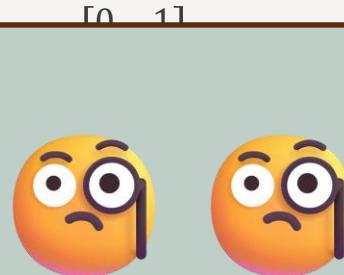
- ❑ Distinct eigenvalues -> eigenvectors are Linear Independent
- ❑ Duplicate eigenvalues ->
- Not all matrices are diagonalizable.
 - Example:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- The diagonalizing matrix S is not unique. $AS = SD$

Diagonalizable and Non-Diagonalizable Matrices

- ❑ Distinct eigenvalues \rightarrow eigenvectors are Linear Independent
- ❑ Duplicate eigenvalues \rightarrow 🤔🤔
- Not all matrices are diagonalizable.
 - Example:



- The dia

Diagonalizable and Non-Diagonalizable Matrices

- For matrix $A = \begin{pmatrix} 0 & -6 & -4 \\ 5 & -11 & -6 \\ -6 & 9 & 4 \end{pmatrix}$
 - Its eigenvalues are $-2, -2$ and -3 (repeated eigenvalues)

$$\begin{pmatrix} 0 & -6 & -4 \\ 5 & -11 & -6 \\ -6 & 9 & 4 \end{pmatrix} \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & -1 \\ 0 & -3 & 3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \\ 0 & -3 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -6 \\ 0 & -4 & 3 \\ 0 & 6 & -9 \end{pmatrix}$$

S is not invertible! $\Rightarrow A$ is non-diagonalizable

Geometric multiplicity of $-2 = 1$

Algebraic multiplicity of $-2 = 2$

Diagonalizable and Non-Diagonalizable Matrices

□ For matrix $B = \begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix}$

- Its eigenvalues are $-2, -2$ and -3 (repeated eigenvalues)

$BR = RD$

$$\begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ -3 & 0 & -1 \\ 0 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 4 & 1 & 2 \\ -3 & 0 & -1 \\ 0 & 3 & 3 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} = \begin{pmatrix} -8 & -2 & -6 \\ 6 & 0 & 3 \\ 0 & -6 & -9 \end{pmatrix}$$

Diagonal Matrix

R is invertible!

R is not unique!

$$\begin{pmatrix} 5 & 3 & 2 \\ -3 & -3 & -1 \\ 3 & -3 & 3 \end{pmatrix}$$

Geometric multiplicity of $-2 = 2$

Algebraic multiplicity of $-2 = 2$

Diagonalizable and Non-Diagonalizable Matrices

- For matrix $B = \begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \end{pmatrix}$

So, what's going on here?

$$\begin{pmatrix} 4 & 8 & -2 \\ -3 & -6 & 1 \\ 9 & 12 & -5 \end{pmatrix} \xrightarrow{\text{Row Operations}} \begin{pmatrix} 0 & 3 & 3 \\ 0 & 3 & 3 \\ 0 & 0 & -3 \end{pmatrix} \xrightarrow{\text{Row Operations}} \begin{pmatrix} 0 & 0 & -3 \\ 0 & -6 & -9 \end{pmatrix}$$

R is invertible!

R is not unique!

$$\begin{pmatrix} 5 & 3 & 2 \\ -3 & -3 & -1 \\ 3 & -3 & 3 \end{pmatrix}$$

Diagonal Matrix

Geometric multiplicity of -2 = 2

Algebraic multiplicity of -2 = 2

Conclusion

Diagonalizable vs. Non-Diagonalizable Matrices

(1) Distinct Eigenvalues

- Any $n \times n$ matrix with n distinct eigenvalues is always diagonalizable.
 - Reason: each eigenvalue yields exactly one independent eigenvector, giving a full set of n independent eigenvectors.

Conclusion

Diagonalizable vs. Non-Diagonalizable Matrices

(2) Repeated Eigenvalues

Diagonalizability depends on the number of independent eigenvectors.

The matrix is **diagonalizable iff**

geometric multiplicity = algebraic multiplicity for every λ .